Homogenisation of GERB and CERES fluxes.

S. Dewitte
Royal Meteorological Institute of Belgium

erview

- 0. Context: Climate Monitoring SAF
- 1. Homogenisation of GERB and CERES fluxe
- 2. Nature of expected errors
- 3. General homogenisation methodology
- 4. Radiance homogenisation
- 5. Flux homogenisation
- 6. Needed data
- 7. Conclusions

Context: Climate Monitoring F

- Sattelite Aplication Facilities (SAF's): projection initiated by EUropean METeosat SATellite (EUMETSAT) organisation for better exploitation of (future) satellite data
- Climate Monitoring SAF: aims to derive satellite products with good quality and whic are consistent in time

ole of RMIB in CM SAF

- Derive radiative fluxes at top of atmosphere
- Input sources for incoming solar irradiance: solar irradiance measurements
- Input sources for reflected solar irradiance an emitted thermal irradiance: GERB and CERE

owchart for incoming solar adiance

owchart for reflected solar and nitted thermal irradiance

Homogenisation of GERB and ERES fluxes

- Homogenisation = merge datasets without introducing discontinuities
 - statistical analysis : estimation of systematic
 differences in function of known parameters
 - a posteriori correction : removal of systematic differences

Nature of expected errors

- Satellite measurement -> Unfiltered radiance
 - processing: calibration, unfiltering
 - expected errors depend on scene type
- Unfiltered radiance -> Flux
 - processing: angular modelling
 - expected errors depend on scene type and viewing angles

definition of the General homogenisation ethodology

- ◆ To homogenise the data form two sources, a comparison and the choice of a reference is needed.
- ◆ Difference = source 1 source 2
 - = (source 1 reference) (reference source
 - = error 1 -error 2

2 Definition of comparison cases d bins

- Comparison/homogenisation can be done independently for number of cases c:
 - radiances, thermal flux: 3 surface scene types occlared, desert
 - solar flux: 3 surface scene types x solar zenith an intervals

omparison method = regression

e.g. flux comparison

$$F_{CERES} = A + B F_{GERB}$$

- perfect agreement <-> A=0, B=1
- cloud classes are treated implicitely
 - solar: low values <-> clear skyhigh values <-> cloudy sky
 - thermal: low values <-> cloudy skyhigh values <-> clear sky

- For every comparison case c data has to be compared for different angular bins b:
 - radiances: viewing zenith angle intervals
 - fluxes: viewing zenith and relative azimuth angle intervals

Radiance homogenisation

se co-angular radiances only

```
eference = (GERB + CERES)/2
```

2 Practical implementation

- ◆ regress CERES versus GERB radiances
 L_{CERES}=A + B L_{GERB}
- homogenise radiances

$$L^{\text{homog.}}_{\text{CERES}} = -A/2 + [1+(1-B)/2] L_{\text{CERES}}$$

 $L^{\text{homog.}}_{\text{GERB}} = A/2 + [1-(1-B)/2] L_{\text{GERB}}$

homogenise fluxes - step 1

$$F^{\text{homog.}}_{\text{CERES}} = -A/2 + [1+(1-B)/2] F_{\text{CERES}}$$
 $F^{\text{homog.}}_{\text{GERB}} = A/2 + [1-(1-B)/2] F_{\text{GERB}}$

l Flux homogenisation

- good reference = mean flux averaged over all viewing angles
 - removes most of the systematic errors dependent angles
- problem GERB: mostly backscatter measurements
- ⇒ reference = bCERES cos(vz) sin(vz) / b cos(vz) sin(vz)

2 CERES flux homogenisation

- choose GERB data for one fixed GERB view angle bin b_{GERB} as intermediate reference
- For every possible CERES viewing angle bin : regress CERES fluxes versus GERB fluxes fixed GERB viewing angle bin b_{GERB}:

$$F_{CERES}(b)=A(b)+B(b)F_{GERB}(b_{GERB})$$

ulate reference regression parameters

$$_{b}A(b)\cos(v_{z})\sin(v_{z})/cos(v_{z})\sin(v_{z})$$

 $_{b}B(b)\cos(v_{z})\sin(v_{z})/cos(v_{z})\sin(v_{z})$

nogenise CERES fluxes relative to reference

$$_{\text{CERES}}^{\text{mog.}} = \mathbf{A} - A(b) + (1 + \mathbf{B} - B(b)) F_{\text{CERES}}(b)$$

3 GERB flux homogenisation

 GERB fluxes for all possible bins can be homogenised by regression against homogenised CERES fluxes

Needed data

- CERES in RAPS mode: all viewing zenith angles and relative azimuth angles are covere
- All surface scene types and solar zenith angle intervals need to be covered in METEOSAT field of view
- e.g. 6 RAPS days in August 1998 for TRMM

Conclusions

- ◆ A method has been proposed to homogenise GERB and CERES fluxes.
- ◆ The method removes the angular dependent systematic differences between GERB and CERES.
- The method will be tested using the 6 CERES RAPS days in August 1998 using GERB like data derived from METEOSAT.